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Abstract 
 
Multinomial processing tree (MPT) models can provide novel insights into the cognitive 

processes underlying a wide variety of social cognitive judgments and behaviors. In previous 

research, MPTs have been used to disentangle the contributions of multiple latent processes to 

tasks configured to assess moral reasoning, processing fluency, decision-making, implicit biases, 

and social categorization, among many other topics. However, until recently, MPT models were 

limited in their application to categorical data. New methodological advances extend traditional 

MPT estimation methods by incorporating reaction time data, thereby expanding the breadth and 

depth of questions that can be investigated. This article provides a user-friendly step-by-step 

tutorial for response-time extended MPT methods with annotated code and data, using the 

Implicit Association Test as a working example.    
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A tutorial on response-time extended multinomial processing tree models in social 

cognition  

Social and cognitive researchers have long been interested in the joint influence of 

multiple qualitatively distinct processes that drive thoughts and behaviors. Given that the 

phenomena psychologists study are often complex and multiply determined, researchers have 

developed tools to dissociate and quantify the unique role of different processes on task 

performance. One such tool is multinomial processing tree (MPT: Batchelder & Riefer, 1999) 

modeling, which belongs to a formal class of mathematical models that describe and quantify the 

multiple processes that account for responding in tasks. The general utility of MPT models has 

been recognized in a broad range of research areas including but not limited to recognition 

memory (Jacoby, 1991), source monitoring (Batchelder & Riefer, 1990; Klauer & Meiser, 2000), 

hindsight bias (Erdfelder & Buchner, 1998), false memory (Jacoby et al., 2005), moral judgment 

(Gawronski et al., 2017), stereotyping (Krieglmeyer & Sherman, 2012), and prejudice (Conrey et 

al., 2005; Meissner & Rothermund, 2013). In the context of social cognition specifically, MPT 

models have been applied to a variety of tasks, such as the affect misattribution procedure (Payne 

et al., 2010), the go/no-go association task (Nadarevic & Erdfelder, 2011), the extrinsic affective 

Simon task (Stahl & Degner, 2007), the Weapon Identification Task (Payne, 2001), and the 

Implicit Association Test (Greenwald et al., 1998). Traditionally, MPT modeling relies solely on 

response frequencies (e.g., correct versus incorrect responses; see Schmidt et al., 2023 for an 

excellent tutorial on this approach). However, two recent methods have been introduced to 

incorporate response latencies into MPT modeling (Heck & Erdfelder, 2016; Klauer & Kellen, 

2018), which have the potential to greatly extend the utility of the MPT modeling method. This 

article provides a user-friendly step-by-step tutorial for the response-time extended MPT 
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methods developed by Heck and Erdfelder (2016) and Klauer and Kellen (2018) with annotated 

code and data. Given the outsized influence of the IAT in social cognition research, we use it as 

the working example in this tutorial. We begin with an illustration of how modeling IAT 

responses using MPT methods can provide greater insight compared to alternative scoring 

approaches, discuss some theoretical contributions of extending MPT models to account for 

response times, then demonstrate the two major approaches for response-time extended MPT 

modeling with working examples. 

MPT Modeling versus Summary Statistics 

Implicit measures, such as the IAT, were developed to overcome individuals’ inability 

and/or unwillingness to accurately report their evaluations of social groups. To do so, implicit 

measures are typically configured with task conditions aimed to constrain the influence of 

deliberative processing, social desirability biases, and introspection failures – thereby facilitating 

the expression of relatively automatic associations linking social groups (e.g., Black versus 

White people) with evaluations (e.g., good versus bad). Traditionally, IAT responses are 

quantified in terms of the D-score (Greenwald et al., 2003) based on differences in response 

latencies to blocks of trials in which social groups share one set of attribute pairings (e.g., 

White/positive, Black/negative) versus another set of pairings (White/negative, Black/positive). 

Because such measures were initially assumed to primarily reflect the influence of automatic 

associations, the latency-based D-score summary statistic is often interpreted to reflect the 

relative strength of mental associations. Consequently, the dominance of the D-score as the 

primary method of quantifying IAT responses has influenced the interpretation of research 

findings in this domain. For example, research exploring age differences in responses to the race 

IAT has found that older people’s D-scores reflect greater pro-White/anti-Black bias compared 
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to younger people’s D-scores (Nosek et al., 2002). This result aligns with historical negative 

portrayal and treatment of Black people and suggests that older people demonstrate stronger 

implicit biases because they learned more racially biased associations than did younger people 

who grew up in an ostensibly more egalitarian society. 

Though this interpretation of age-related differences in implicit bias is reasonable, 

research using MPT models suggests a different interpretation (Calanchini, 2020; Hütter & 

Klauer, 2016). Recognizing that D-scores can quantify the direction of bias (e.g., a relative, 

evaluative preference for Black versus White people) but cannot provide insight into the 

cognitive processes underlying this bias, researchers used MPT models to quantify the joint 

contributions of multiple processes to responses on implicit measures to better understand this 

apparent age-related difference in implicit bias. The quad model (Conrey et al., 2005) is an MPT 

model that proposes that IAT responses reflect not only mental associations between social 

groups and attributes, but also an inhibitory cognitive process that can constrain the expression 

of associations, among other processes. D-scores cannot distinguish between the contributions of 

associations and inhibition to IAT responses. Research applying the quad model to the race IAT 

responses of older and younger people found that racial associations did not vary between age 

groups, but instead that older people’s inhibitory responses were weaker than those of younger 

people (Gonsalkorale et al., 2009). Thus, the quad model suggests that deficits in inhibition, 

rather than differences in associations, can explain IAT responses across age groups. As this 

example illustrates, MPT models can provide more theoretically-precise insight into the 

cognitive processes underlying social cognitive behaviors than traditional summary statistics. 

However, MPT models are also limited because, until recently, they relied solely on response 

frequencies (e.g., correct, incorrect) to the exclusion of response latencies. 
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Response-Time Extended MPT Models 

To date, most research using MPT models has relied on categorical data (e.g., frequencies 

of correct/incorrect responses), excluding latency data. Consequently, neither D-scores nor MPT 

models make full use of the available frequency and latency data that is typically collected in 

social cognitive research. However, recent methodological advances extend MPT models to 

account for response times (Heck & Erdfelder, 2016; Klauer & Kellen, 2018). Such response-

time extended MPT models not only produce estimates of the extent to which multiple cognitive 

processes influence responses, but they also produce estimates of the latent processes’ 

completion times or the relative speed of processing paths – the sequence of processes that lead 

to a response. Whereas summary statistics like the IAT D-score rely primarily on response 

latencies and MPT modeling relies solely on response frequencies, response-time extended MPT 

models account for both bases of information. In doing so, they are more psychologically 

comprehensive than other analytic approaches, thereby opening up numerous avenues for 

exploration and tests of the kinds of dual-process theory that underlie much of the social 

cognitive literature.  

Rooted in traditional dual-process theory, MPT models always assume that judgments 

and behaviors are driven by multiple latent processes that sometimes work in tandem but 

sometimes compete against one another. One core tenet of dual-process theory is that automatic 

processing is faster than controlled processing – an assumption that can be readily modeled and 

tested using response-time extended MPT models. Furthermore, researchers can use response-

time extended MPT models to test different assumptions about the nature and temporal interplay 

of the latent processes specified in the model structure. For example, (Klauer & Voss, 2008) 

propose multiple interpretations of the cognitive processes that contribute to responses on the 
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Weapon Identification Task (WIT; Payne, 2001), which is a sequential priming task designed to 

assess the effects of racial priming on the correct identification of weapons and tools. Each 

interpretation relies on distinct assumptions about the time course by which the processes unfold, 

and analyses based on response frequencies alone cannot distinguish among these interpretations. 

Consequently, (Laukenmann et al., 2023) used response-time extended MPT models to 

investigate the relative speed of each processing path that contributes to WIT responses. They 

found that the model in which automatically-evoked associations interfere with correct object 

identification from the outset of each trial best fit the observed data, thereby advancing our 

understanding of the cognitive processes that contribute to responses on the WIT. When theories 

or assumptions that are relevant to a researcher’s objectives cannot be distinguished using the 

traditional MPT modeling framework, response-time extensions of MPT models serve as a 

viable alternative approach. 

This tutorial focuses on two prominent approaches for extending MPT models with 

response time data. RT-MPT models (Klauer & Kellen, 2018) estimate the response times for 

each individual cognitive process within the processing paths of a model. In contrast, MPT-RT 

models (Heck & Erdfelder, 2016) estimate the relative speed of a sequence of cognitive 

processes in the model’s paths by splitting response time data into discrete bins. We begin with a 

discussion of the major differences between these two model classes. For each approach, we 

formalize the well-validated quad model (Conrey et al., 2005) as a response-time extended MPT 

model in the context of the IAT. Then, we provide guidance to (a) specify a model using 

appropriate syntax, b) prepare the IAT data for modeling, c) fit the model to the IAT response 

frequency and response time data, d) interpret the model output, and e) test hypotheses involving 

process times. All data and code are freely available and can be accessed at https://osf.io/rnbhd/. 

https://osf.io/rnbhd/
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Selecting RT-MPT versus MPT-RT Models 

 Your decision to rely either on an RT-MPT or MPT-RT model should be theoretically 

grounded and will likely depend on your research design and objectives. Table 1 summarizes 

some major differences between both models. One prominent difference between the two model 

types is that each integrates RTs differently. MPT-RTs are situated within the framework of 

traditional frequency-based MPT models, in that observed RTs are not treated as continuous 

variables but instead transformed into bins for each individual and then used as additional 

discrete response categories. In contrast, RT-MPTs jointly model response frequencies and their 

respective latencies, which ultimately provides the researcher with estimates of process 

probabilities and average process completion times.1 Thus, the first major difference between 

response time-extended MPT modeling methods is that MPT-RT models do not produce process 

completion times for each process specified in the model, whereas RT-MPT models do. As such, 

MPT-RT models could be used to instead investigate the relative speed of different processing 

paths. Another difference between the two model types is that RT-MPT models produce 

estimates of encoding and motor execution times, but MPT-RT models do not. This feature may 

be particularly valuable if a researcher suspects that encoding or motor responses may vary 

across different stimuli or experimental conditions and would like to account for that source of 

variance within the model.  

 Another difference between model types is the assumptions each makes about the 

distributions of RTs. RT-MPT models assume that the completion time for each process is 

 
1 RT-MPT models assume independence of processing times within participants at the level of individual trials, such 
that the time required for completing one quad process is uncorrelated with completion time of another quad process 
(e.g., overcoming bias takes the same amount of time irrespective of how fast activated associations took 
previously). In contrast, due to the hierarchical structure of the model, correlations between the average process 
completion times of two processes estimated per participant can be accommodated and estimated by RT-MPT 
models. 
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exponentially distributed and that the motor plus execution time is normally distributed with a 

truncation from below at zero. However, this assumption may not be tenable across all 

experimental designs and paradigms and can potentially result in distorted results if the 

distributional assumptions do not hold. In contrast, MPT-RT models avoid imposing 

assumptions on the shape of RT distributions, which is potentially an advantage over RT-MPT 

models to the extent that it avoids concerns about violations of the distributional assumptions of 

the underlying process and motor times. That said, RT-MPT models assume that processing 

paths proceed serially, such that process completion times add up along the processing path. This 

assumption may be useful for testing the sequential order of the processes, but it may be too 

restrictive or theoretically fail to account for the observed data. For example, this assumption of 

seriality may not be compatible with other reasonable perspectives on cognition, such as race 

models or parallel competitive models in which two different processes run in parallel. MPT-RT 

models make no such assumption about whether the processes within a processing path unfold 

serially or in parallel and, thus, are relatively more flexible than RT-MPT models on this 

dimension. 

Because MPT-RT models are situated within the framework of frequency-based MPT 

models, researchers can rely on a relatively thriving methodological toolbox that has already 

been developed. Software for frequency-based MPT modeling include the MPTinR (Singmann 

& Kellen, 2013) and TreeBUGS (Heck, Arnold, et al., 2018) R packages, as well as the stand-

alone multiTree (Moshagen, 2010) and HMMTree (Stahl & Klauer, 2007) programs. Thus, 

MPT-RT models may be particularly user-friendly for researchers who are already familiar with 

this software and their associated file types and statistical output. Additionally, Hartmann and 
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colleagues (2020) recently introduced the rtmpt package to facilitate RT-MPT modeling in the R 

environment. 

All MPT models – both traditional and RT-extended – must be able to infer unique 

parameter values from observed data (i.e., be identifiable)2. An advantage of the RT-MPT 

approach is that incorporating response time data can produce an identified model that would 

have otherwise not been identified on the basis of frequency data alone.3 In contrast, MPT-RT 

models are typically not identified if the underlying MPT model is not identified. In addition, 

MPT-RT models involve additional parameters that may require the researcher to impose 

theoretically-grounded model constraints to achieve identifiability, and researchers may find it 

difficult to justify their proposed constraints. We recommend Heck and Erdfelder (2016) for 

further reading on MPT-RT model identifiability, specifically, as well as Schmittmann et al. 

(2010) for further reading on MPT model identifiability more generally. 

In summary, researchers may favor RT-MPT models when their research objective 

involves testing assumptions about the order of serial processes, when they are interested in 

process completion times for individual processes, or when the underlying MPT model would 

not be identified on the basis of frequency data alone. Researchers may favor MPT-RT models 

when they have assumptions about the serial nature of processes, when the research objective 

centers on processing paths rather than individual processes, or when they want to avoid 

imposing distributional assumptions. 

 

 
2  The identifiability of a model can be heuristically investigated by fitting the model to simulated data with known 
underlying parameter values and evaluating if the model produces parameter estimates sufficiently close to the true 
values (Schmittmann et al., 2010). 
3  RT-MPT models possess this feature of identifiability because they not only predict frequencies and mean 
response latencies, but also variance, skewness, etc. of response-time distributions for each response. Each of these 
estimates are non-redundant and effectively add an independent model equation, resulting in a system of equations 
that can in most cases be solved uniquely for a given set of parameter values. 
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Table 1 

A Comparison of RT-MPT and MPT-RT Models 

 

RT-MPT Models 

RT-MPT models (Klauer & Kellen, 2018) belong to a class of formal mathematical 

models that link latent cognitive processes to response latencies and frequencies on tasks like the 

 
4 Heck, Erdfelder, and Kieslich (2018) proposed generalized processing tree models, an extension of MPT-RT 
models that rely on distributional assumptions for path completion times. To the best of our knowledge, this 
approach has not yet been developed for use within the Bayesian hierarchical framework. 

 Model Type 

Major Difference RT-MPT MPT-RT 

1. Process Completion 

Times 

 

Provides estimates of average 
process completion times. 

Provides estimates of the 
relative speed of processing 

paths. 
 

2. Encoding Plus Motor 

Execution Time 

Provides estimates of the time 
required for encoding task 

stimuli and motor execution 
of the response. 

 

Does not estimate encoding 
and motor execution time. 

3. Distributional 

Assumptions 

 

Assumes the completion time 
for each process is 

exponentially distributed. 
Assumes the motor plus 

execution time is normally 
distributed with a truncation 

from below at zero. 
 

Avoids distributional 
assumptions by 

subclassifying response times 
into bins.4 

 

4. Seriality vs. 

parallelism 

Assumes serial processes 
within paths. 

Avoids assumptions about the 
serial or parallel nature of 

processes. 
 

5. Identifiability Models that are not identified 
for frequency-based MPT 

models (including MPT-RT) 
may be rendered identified. 

 

Typically not identified if the 
underlying MPT model is not 

identified. 
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IAT. Like MPT models, they provide estimates of the likelihood that each process specified in 

the model influenced IAT responses. Additionally, RT-MPTs provide process completion times 

– the time it takes for a process to get to either of two outcomes (e.g., success, failure) – for each 

process specified in the model, as well as encoding and motor execution times. This tutorial 

walks through the RT-MPT model class that assumes exponentially distributed process 

completion times and truncated normally distributed encoding and motor execution times,5 

which is implemented in the R software package ‘rtmpt’ (Hartmann et al., 2020). For more 

information about the auxiliary assumptions on process times and motor times, see Klauer and 

Kellen (2018) and Klauer et al. (2024). We begin by specifying the quad model, pre-processing 

and transforming IAT data for modeling, fitting the quad model, and interpreting the output. 

The Quad Model 

The quad model (Conrey et al., 2005) proposes that four qualitatively distinct processes 

influence performance on the IAT. The proposed interplay among the processes specified in the 

quad model can be illustrated in a processing tree (Figure 1). 

 

 

 

 

 

 

 

 
5 RT-MPT models can also be specified using an alternative distributional assumption of cognitive processes 
following a Wiener-Diffusion process. This approach assumes that the process completion times follow a first-
passage time distribution of a Wiener-Diffusion model and the encoding and motor execution times follow a 
truncated t-distribution (Klauer et al., 2024). 
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Figure 1 

A Portion of the Quad Model 

Note. The table on the right illustrates correct (✓) and incorrect (X) responses across different 

trial types. Parameters with lines leading to them are conditional upon the preceding parameters. 
 

The Associations parameter refers to the degree to which mental associations are 

activated when responding to a stimulus. All else equal, the stronger the mental link between the 

target (e.g., White) and the attribute (e.g., good), the more likely the Association is to be 

activated and drive responses in an association-consistent direction. The quad model estimates 

two different Associations parameters and is typically configured such that one parameter 

reflects an association between White and positive evaluations, and the other parameter reflects 
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an association between Black and negative evaluations. As illustrated in Figure 1, the 

Associations parameter is situated at the root of the processing tree. The Detection of correct 

responses parameter is conceptualized as an accuracy-oriented process and reflects the likelihood 

that the participant can discern the correct response. Sometimes activated associations conflict 

with the detected correct response. For example, on trials in which White faces appear and the 

categories ‘White’ and ‘bad’ share a response key, to the extent that a participant associates 

‘White’ with ‘good’ then activated associations would conflict with the detected correct 

response. The quad model proposes an Overcoming Bias parameter to resolve such a conflict 

between Associations and Detection. Overcoming Bias refers to an inhibitory process that 

prevents associations from influencing behaviors when they conflict with detected correct 

responses. As illustrated in Figure 1, the Overcoming Bias parameter is situated along the top 

two paths of the processing tree. Finally, the Guessing parameter does not represent a specific 

process, per se, but instead reflects the tendency to respond with ‘good’ versus ‘bad’ in the 

absence of influence from Associations, Detection, and Overcoming Bias.  

Specifying RT-MPT Models (Klauer & Kellen, 2018 Approach) 

 For the RT-MPT approach (Klauer & Kellen, 2018), we begin by specifying the quad 

model using the well-established EQN syntax in which each line defines a single path 

probability.6 An annotated version of the quad EQN file (‘quad.eqn’) and an equation key 

(‘EquationKey.txt’) can be found in our OSF project page. The first few lines of the quad model 

are: 

1   ;   t01   ;   ACwg1 
1   ;   t01   ;   (1-ACwg1)*D1 
1   ;   t01   ;   (1-ACwg1)*(1-D1)*G1 

 
6 Researchers may also specify the MPT model using MDL format (Singmann & Kellen, 2013) in which all path 
probabilities are specified within the same line of code separately for each response category. For a more detailed 
description of MDL format, see Singmann and Kellen (2013) and Hartmann et al., (2020). 
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1   ;   t02   ;   (1-ACwg1)*(1-D1)*(1-G1) 

 
The left column specifies the IAT trial type (‘1’): in this case, trial type ‘1’ refers to responses to 

White stimuli when ‘White’ and ‘good’ share a response key. The middle column specifies 

categories for correct (‘t01’) and incorrect (‘t02’) responses. The right column specifies the 

product of quad parameters theorized to underlie responses for each processing path. Each 

column is separated by semicolons. The first three lines describe how a correct response can be 

produced by: activated White-good Associations alone; successful Detection in the absence of 

activated Associations; or a response bias towards ‘good’ in the absence of activated 

Associations and Detection. In contrast, the fourth line describes how an incorrect response can 

be produced by a response bias towards ‘bad’ in the absence of activated Associations and 

Detection. For each line, the parameters must be specified in the order they appear along the 

processing path, starting at the left with the root of the path extending to the end of the path on 

the right. For example, in the fourth line of the quad EQN, the processes must be specified as 

‘(1-ACwg1)*(1-D1)*(1-G1)’ and not any other order. Once the researcher specifies the MPT 

model, it must be translated to a model class that can be used to fit RT-MPT models. The quad 

model specification can be saved as an R object: 

eqn=" 
1   ;   t01   ;   ACwg1 
1   ;   t01   ;   (1-ACwg1)*D1 
1   ;   t01   ;   (1-ACwg1)*(1-D1)*G1 
1   ;   t02   ;   (1-ACwg1)*(1-D1)*(1-G1) 
… 
8   ;   t15   ;  (1-ACbb1)*(1-D1)*(1-G1) 
" 
 

Then, the researcher can use the to_ertmpt_model() function to translate the EQN to a 

format that can be read and used in subsequent modeling functions: 

quad_eqn <- to_ertmpt_model(eqn_file = eqn) 
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Alternatively, the researcher can provide a path to the text file: 

quad_eqn <- to_ertmpt_model(eqn_file = “./quad.eqn”) 

Data Source 

 The example IAT data that forms the basis of this tutorial was configured to assess race 

evaluations and consists of stimuli reflecting two target categories (Black, White) and two 

attribute categories (good, bad). This data was collected online from 138 undergraduate students 

and can be downloaded from our OSF project page. We include three versions of this data, two 

of which are relevant to RT-MPT models specifically: 

1. iatData.csv: contains the raw IAT trial-level data describing the trial type, response time, 

and accuracy of each response for all 138 participants (63.77% female; age: M = 19.91 

years, SD = 3.25). This sample consists of undergraduate students at a public university 

in California, and a subset of these data were reported in Elder et al. (2023). All data used 

in this tutorial were collected online using Millisecond’s Inquisit software, which can 

achieve the millisecond-precision timing that is crucial for rt-extended modeling. 

2. rtmptData.csv: reflects responses that have been cleaned and formatted for RT-MPT 

modeling. This data is in long format such that each line describes a unique IAT trial. 

3. mptrtData.csv: reflects responses that have been cleaned and formatted for MPT-RT 

modeling. This data is in wide format such that each line summarizes a participant’s total 

number of responses for each response category. 

Data Preprocessing and Transformation 

Response latency outliers often lead to convergence problems for RT-MPT models, 

especially when the outliers arise due to extraneous processes unrelated to the processes of 
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interest specified in the model, such as distracted responding.7 Consequently, researchers may 

choose to apply an outlier-exclusion criterion to address unreasonably slow or fast responses. For 

researchers interested in applying these exclusions to their own data, our OSF project page 

includes annotated R code that excludes very slow and very fast responses in each individuals’ 

RT distribution using Tukey’s outlier criterion. The Gibbs sampler used in this RT-MPT 

implementation is sensitive to outliers, so these preprocessing steps may lead to a quicker and 

more efficient model estimation. 

 Here we describe how to transform raw IAT response data (‘iatData.csv’) to a format 

appropriate for model fitting (‘rtmptData.csv’). The necessary variables in the data frame should 

include the subject identifier (subj), the experimental group the subject was assigned to (group), 

the tree of the current trial (tree), the observed response category (cat), and the observed 

response time in milliseconds (rt) as outlined below: 

subj group tree cat rt 

52641 1 3 t05 579 

52641 1 1 t01 1316 

52641 1 3 t05 762 

52641 1 1 t01 678 

52641 1 4 t08 440 
 

The ‘tree’ variable corresponds to the trial type categories found in the left column of the 

EQN file, and the ‘cat’ variable corresponds to the response categories found in the middle 

 
7 Excluding outliers that arise from the distribution of response times predicted by the modeled processes is likely to 
lead to systematic bias (Ulrich & Miller, 1994). However, simulation studies exploring the size of such bias and the 
conditions under which bias arises are rare and would be a fruitful direction for future research.  
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column of the EQN file. The ‘group’ variable can be used to specify separate experimental 

groups for which the researcher wishes to estimate separate parameters. For example, the 

researcher could assign 0 to a control group and 1 to an experimental group, which would 

produce separate group-level parameters for each group. The model fitting function requires data 

to be formatted such that all variables, besides response times, start at 0. The code below carries 

out this necessary transformation on the IAT data.  

data <- to_ertmpt_data(raw_data = MPT_DF, model = quad_eqn) 

After running this code, the subset of data shown above would now be formatted properly for 

model fitting and would look like the lines of data below. For example, the observed response 

category variable would be recoded such that t01 is now 0, t02 is now 1, t03 is now 2, etc.  

subj group tree cat rt 

0 0 2 4 579 

0 0 0 0 1316 

0 0 2 4 762 

0 0 0 0 678 

0 0 3 7 440 
 

Model Fitting 

To fit RT-MPT models to data, researchers can use the model-fitting function 

fit_ertmpt(). This function samples from the posterior distribution using a Metropolis-Gibbs 

sampler and returns the posterior samples saved as an mcmc.list. The code below outlines the 

function arguments to fit an RT-MPT model to data. Two of these arguments must be specified 

by the researcher: model and data. The other nine arguments can be omitted, in which case the 

algorithm will rely on default values and settings. For this Bayesian estimation method, the 
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default settings assume weakly noninformative priors. For detailed descriptions of these other 

arguments, see the supplementary materials as well as the package vignette of ‘rtmpt’. 

Researchers seeking additional information about Bayesian inference and estimation in R may 

find (Kruschke, 2015) to be helpful in providing accessible information and step-by-step 

instructions.  

rtmpt_out <- fit_ertmpt(model = quad_eqn, 
                                data = data, 
                                n.chains = 4, 
                                n.iter = 5000, 
                                n.burnin = 200, 
                                n.thin = 1, 
                                Rhat_max = 1.05, 
                                Irep = 1000, 
                                prior_params = NULL, 
                                indices = FALSE, 
                                save_log_lik = FALSE, 

  old_label = FALSE) 
 

Once the researcher has run the model-fitting function, sampling will continue until the 

Rhat value is less than the value specified in the Rhat_max argument. When the model 

converges, researchers can then use the code below to save the fitted model. If the model fails to 

converge or converges slowly, the problem may be a poor starting value for that particular 

estimation, or one or more of the chains has gotten lost exploring a different area of the posterior 

distribution compared to the other chains. In either case, the solution may be to stop and restart 

the estimation with a new starting value. Additionally, a model that fails to converge may be 

poorly specified, in which case you may need to consider alternative model specifications. 

save(rtmpt_out, file="rtmpt_out.Rdata") 

Interpreting Model Output 

Model Fit 
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To evaluate model fit, researchers can rely on the T1 statistic (Klauer, 2010), which 

summarizes how well the model accounts for the pattern of observed response latencies and 

frequencies (e.g., the number of correct and incorrect IAT responses) aggregated across 

participants. The posterior predictive p-values (PPP) for T1 quantify the discrepancy between the 

expected and observed data, with PPP < .05 indicating poor model fit. In our example, the 

observed and expected values were 17.49 and 7.62, respectively, p = .03. The code below 

produces T1 for the frequency and latency data.  

rtmpt_out$diags$PostPredCheck_Frequencies 

rtmpt_out$diags$PostPredCheck_Latencies 

T1  for the frequency data corresponds to the goodness-of-fit chi-square statistic used in 

traditional modeling approaches (Batchelder & Riefer, 1999). Consequently, T1 depends on the 

number of observations, with more observations providing greater power to detect even a small 

degree of model misfit. Though our p-value would indicate model misfit, we have little insight 

into its degree. For this reason, we recommend also calculating W using T1observed for the RT-

extended frequencies. W scales T1 by the number of observations according to the equation 

below. Based on (Cohen, 1992) effect size recommendations, W < 0.1 is heuristically interpreted 

as indicating acceptable model fit. In our example, we compute a W-statistic of 0.03, suggesting 

that the model fit was acceptable. 

 𝑊 = # !!"#$%&'%(
)	+,&-./.+,)-$	∗	)	-&.,1$	+%&	+,&-./.+,)-

  

Group-Level Parameter Estimates 

The code below produces the posterior mean and median of the group-level parameters, 

as well as 95% Bayesian credible intervals for each parameter specified in the RT-MPT model. 
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The output of this code is illustrated in Figure 2. For the full summary output from this model, 

see our project OSF page. 

rtmpt_out$summary$transformed_pars 

Figure 2 

R Output of RT-MPT Group-level Parameter Estimates  

 

In the summary output, theta values reflect group-level parameter estimates transformed 

to a probability scale ranging from zero to one, such that the group-level means correspond to the 

probability that each process influences IAT responses. For example, the mean estimate for the 

Detection parameter (‘theta_D1) is about .91, which suggests that Detection plays a relatively 

large role in IAT responding. In contrast, the parameter estimates for White-good 

(‘theta_ACwg1’) and Black-bad (‘theta_ACbb1’) activated Associations are far lower (~.06), 

which suggests that they play a relatively small role in IAT responding. The output also contains 

information about the standard deviation of the posterior distributions for the parameters, the 
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median and 95% Bayesian credible interval, the standard error, the standard error adjusted for 

autocorrelation,8 the effective sample size, and the Rhat values. 

In addition to process probabilities, the output includes process times for positive 

outcomes (tau_plus), negative outcomes (tau_minus), and encoding the IAT stimuli plus motor 

execution of the response (delta). In the context of the activated Associations, Detection, and 

Overcoming Bias, positive outcomes correspond to the success of each process, and negative 

outcomes correspond to the failure of each process. However, the Guessing parameter is coded 

such that the positive outcome is a response bias for ‘good’ and a negative outcome is a response 

bias for ‘bad.’ The average process time linked to each path can be calculated by summing up the 

process times for all parameters plus the encoding and motor execution time. 

Testing Process Time Hypotheses 

Researchers often have testable hypotheses about the speed of cognitive processes. One 

such hypothesis is rooted in a core tenet of dual-process theory – that automatic processing is 

faster than controlled processing – and can be readily tested using RT-MPT models. To explore 

this question, we began by computing the total average processing times for each path by 

summing the independent processing times (Figure 3). Descriptively, we see that the paths that 

include the successful influence of the control-oriented processes detection and overcoming bias 

are the slowest paths. Furthermore, the fastest branches are the bottom two, which reflect a 

general response bias driving IAT responding either in one direction or another following a 

failed activation of associations and a failed detection attempt. 

 

 

 
8 The standard errors refer to computational error only (i.e., how well the posterior mean was approximated by 
MCMC sampling).  
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Figure 3 

Total Average Processing Time for Paths in RT-MPT Quad Model 

 

Using the current example on a trial with a Black stimulus, we test for credible 

differences in processing times in the top path of the quad model (i.e., AC*D*OB) reflecting 

both the control-oriented processes of successful Detection and Overcoming Bias, compared to 

the bottom path of the quad model (i.e., [1-AC]*[1-D]*[1-G]) reflecting a response bias towards 

‘bad’ in the absence of influence from the other processes. We predict that the top path should be 

credibly slower than the bottom path. Using the code below, we take the posterior samples of 

latencies corresponding to the bottom path and subtract them from the posterior samples of 
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latencies corresponding to the top path to produce a distribution of differences. Then, we 

compute the 95% highest density interval (HDI) to determine if there are credible differences in 

processing speed between the two paths, which can be interpreted similarly to classic confidence 

intervals where an HDI containing zero indicates no credible differences. 

diff <- coda::as.mcmc(times1 - times2) 

coda::HPDinterval(obj = diff, prob = 0.95) 

Indeed, we find that average process times for the top path (M = 446ms) are credibly slower than 

process times for the bottom path (M = 93ms; mean difference = 353ms, 95% HDI [235ms, 

475ms]). Of note, the average process times for the bottom path are unexpectedly quite fast. 

However, given that all the branches of the quad model contain controlled processes (completing 

either successfully or failing), this approach does not provide a clear test of the question of 

whether automatic processes are faster than controlled ones for the current model. 

 Another approach for testing process time hypotheses involves comparing the mean 

processing time estimates and 95% BCIs for control-oriented processes vs. automatic processes. 

Neither the process completion times for the successful activation of White-good associations (M 

= 172ms, 95% BCI [98ms, 277ms]) or Black-bad associations (M = 211ms, 95% BCI [135ms, 

307ms]) appear to be different from process completion time for the control-oriented process of 

Detection (M = 188ms, 95% BCI [153ms, 229ms]). Furthermore, the process completion time 

for the success of Overcoming Bias (M = 47ms, 95% BCI [17ms, 106ms]) does not overlap with 

the 95% BCI for the success of activated Black-bad associations and appears to be reliably faster. 

In contrast to the testing approach outlined in the above paragraph, this approach does not 

provide evidence that the control-oriented processes are slower than the automatic process in the 

RT-MPT version of the quad model. Note also that an average processing time of 47 ms for 
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successful overcoming of bias (see Figure 2) seems relatively fast for a controlled process. Other 

models that include response times, such as diffusion models, also often attribute the bulk of the 

reaction time to motor processes and only attribute relatively short amounts of time to cognitive 

processing. Nevertheless, short process times can also indicate the parallel operation of two or 

more processes – in violation of the seriality assumption underlying RT-MPT models. For 

example, detection processes may overlap in time with attempts to overcome bias, such that the 

sum of the two process times should be interpreted to reflect their joint completion. 

Consequently, the completion time estimated for overcoming bias is an underestimate due to the 

overlap with the detection process.  

MPT-RT (Heck & Erdfelder 2016 Approach) 

MPT-RT models (Heck & Erdfelder, 2016) integrate response time data into the 

traditional MPT modeling framework without making assumptions about the shape of the 

observed RT distribution (Heck & Erdfelder, 2016). Rather than relying on distributional 

assumptions, MPT-RTs categorize each individual’s RT distribution into multiple bins.  

We prepared the raw IAT data (‘iatData.csv’) to be fit to an MPT-RT version of the quad 

model by relying on a mean split to categorize response times. For the purpose of exposition, we 

did not collect an additional set of data to be used for informing the RT boundaries of bins – but 

as a best practice, researchers should use data collected in an independent pilot study to identify 

category boundaries for assigning RTs to bins. The data that has been cleaned and prepared for 

model fitting can be found in the OSF repository (‘mptrtData.csv’). We calculated the mean log-

transformed response time for each participant and categorized each response as either fast or 

slow depending on whether it was lower or higher than the mean, respectively. This method 

produces two discrete RT bins of fast and slow responses for each correct and incorrect response 
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across all IAT trial types for each participant. Though dichotomizing logarithmized response 

times according to a mean split results in a loss of information compared to analyzing continuous 

response times, this strategy speeds up parameter estimation, creates comparable RT bins across 

participants, and reduces the possibility of zero-count bins that may produce misleading results. 

The following code splits each participants’ response times into fast and slow bins based on a 

mean split. 

df.rt.bin <- df %>% 
  dplyr::group_by(participant.id, .drop = FALSE) %>% 
  dplyr::summarise(rt.logmean = exp(mean(log(rt), na.rm = 
T))) 
 
df.rt.bin <- df.rt.bin %>% 
  dplyr::mutate(rt.bin = case_when(rt.logmean <= rt ~ 0, 
                                   rt.logmean > rt ~ 1)) 
  
Figure 4 illustrates the cognitive architecture of this MPT-RT version of the quad model 

in a processing tree. At the end of each processing path, an additional parameter L (for latency) 

reflects the probability of the path terminating in a fast response with probability L and in a slow 

response with the complementary probability (1-L). In the context of the MPT-RT version of the 

quad model, we specify six separate latency parameters for different types of processing 

pathways. L1 is the latency parameter for the Associations, Detection, and Overcoming Bias 

pathway, L2 is the latency parameter for the Associations, Detection, and failure to Overcome 

Bias pathway, L3 is the latency parameter for the Association pathway in the absence of 

Detection, and L4 is the latency parameter for the pathway involving Detection in the absence of 

Associations. We specify two separate L4 parameters, one for face stimuli (L4face), and another 

for words (L4word). Last, L5 is the latency parameter for the path involving Guessing good or 

bad in the absence of influence from other processes. 
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Figure 4 

A Portion of the MPT-RT model version of the Quad Model 

 

Note. The table on the right illustrates correct (✓) and incorrect (X) responses across different 

trial types. Parameters with lines leading to them are conditional upon the preceding parameters. 

We estimate two different L4 parameters – one for face stimuli and another for word stimuli – 

which are not reflected in this simplified model depiction.  

Model Fitting 

 We outline here a modeling approach that relies on Bayesian estimation for hierarchical 

latent-trait MPT models (Klauer, 2010). This approach is implemented in the ‘TreeBUGS’ R 
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package (Heck et al., 2018) and draws posterior samples of the parameters using Markov chain 

Monte Carlo (MCMC) methods. The code below outlines the function arguments. 

mptrtModel <- traitMPT(eqnfile="mptrtQuad.eqn", 
                 data = mptrtData, 
                 n.adapt=10000, 
                 n.iter=100000, 
                 n.burnin=5000, 
                 n.thin=5, 
                 n.chains=4) 
 

Like the RT-MPT approach described above, the estimation described here also relies on 

hierarchical Bayesian inference and uses similar arguments for the model fitting function: 

n.chains, n.iter, n.burnin, and n.thin. However, this approach differs from the RT-

MPT modeling approach because it does not include a Rhat_max argument. Rather, sampling 

will continue for however many iterations are specified in the n.iter argument. After the 

estimation has completed, researchers can evaluate the Rhat convergence statistic in the 

summary output of the fitted model.  

Additionally, researchers can visually check for model convergence by inspecting trace 

plots. Figure 5 illustrates the trace plot for the Detection parameter, which shows the values that 

Detection took during the sampling of the chain, with different colors representing different 

chains. Ideally, the trace plot should resemble a “fat, hairy caterpillar” with large amounts of 

overlap among the chains, which indicates that the sampler has adequately explored the full 

range of the posterior distribution. We generated this plot using the code below. 

plot(mptrtModel, parameter = "mean") 
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Figure 5 

Trace Plot for Quad Detection Parameter 

 
If either the Rhat convergence statistic or the visual check for convergence suggests that 

the model did not sufficiently converge, then researchers can begin a new estimation with an 

increased burnin period and/or number of iterations. However, given that MPT estimation can 

often be time intensive, researchers can instead use the extendMPT() function to add more 

MCMC samples to the fitted model while retaining all of the previously sampled posterior 

values. 

summary(mptrtModel) 

mptrtModelExtended <- extendMPT(mptrtModel, n.iter = 50000, 

n.adapt = 10000, n.thin =5) 

Interpreting Model Output 

As with the RT-MPT model, researchers can use the T1 statistic (Klauer, 2010) to 

evaluate model fit. Additionally, researchers using MPT-RT models can use the T2 statistic, 

which summarizes how well the model accounts for the variances and covariances of the RT-

extended frequencies computed across participants and quantifies how well the model accounts 
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for individual differences between participants’ RT-extended response frequencies (Klauer, 

2010). Similar to the RT-MPT models, we recommend reporting the W statistic because the 

group-level T1 statistic is highly powered to detect even a small degree of misfit. Relative to the 

group-level tests, individual-level tests necessarily have less power to detect misfit. 

Consequently, we also recommend exploring the median individual-level p-value for T1. In our 

example, the group-level T1 observed and predicted values were 4.21 and .17, respectively, p < 

.001. However, at the group level, the model shows adequate fit after adjusting for the number of 

observations (W = 0.016). In addition, the median individual T1 p-value was .20. The code below 

produces group-level T1, group-level T2, and individual-level T1. 

PPP(mptrtModel) 

Figure 6 shows the summary output for MPT-RT models, which contains information 

about the mean process probabilities and 95% Bayesian credible intervals, the standard error 

adjusted for autocorrelation, effective sample size, and Rhat values. The basic parameter 

estimates in the summary output for MPT-RT models can be interpreted very similarly to the 

RT-MPT models described above, such that the mean parameter estimates for MPT-RT models 

quantify the probability that each quad process influences IAT responses. For example, the mean 

estimate for the Detection parameter (‘mean_D1’) is about .88, suggesting that Detection plays a 

large role in IAT responding. Importantly, the probability parameter estimates produced from 

this MPT-RT implementation of the quad model may differ somewhat from the probability 

parameter estimates from the RT-MPT implementation of the quad model due to the substantive 

differences in the assumed prior distributions and other underlying model assumptions for each 

modeling method. That said, they should ideally match relatively closely; indeed, in the present 
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analyses the BCIs of parameters estimated by both methods overlap. However, major 

discrepancies between parameters estimated by the two methods may indicate model misfit. 

Figure 6 

R Output of MPT-RT Group-level Parameter Estimates 

 

Testing Process Time Hypotheses 

Unlike RT-MPT models, MPT-RT models do not provide estimates of process times but 

instead provide insight into the relative speed of the processing paths. By specifying equality 

constraints and order restrictions between latency parameters, researchers can test hypotheses 

about the relative speed of different processing paths. For example, the core tenet of dual-process 

theory that automatic processing is faster than controlled processing can be readily tested in the 

context of the MPT-RT version of the quad model, which specifies six separate latency 

parameters for different types of processing pathways. Some processing pathways, such as L3, 

solely reflect parameters assumed to capture automatically-activated Associations (though the 

assumption that the failure of Detection has no time cost is an empirical question). Other 

processing pathways, such as L1, reflect parameters assumed to capture control-oriented 

Detection and Overcoming Bias. Based on dual-process theory, we should expect processing 
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routes characterized by automatic processing without the successful influence of control-oriented 

processing to be faster than processing routes characterized by successful control-oriented 

processing.  

To test this hypothesis using the MPT-RT framework, we fit a model with constraints on 

two latency parameters, such that L3 ≥ L1, which reflects the assumption that the automatic 

processing pathway is never slower than the control-oriented processing pathway. We also fit the 

basic MPT-RT model with no constraints on the relative speed of different pathways. To test our 

assumption about automatic- versus control-oriented processing speeds, we will compare the 

models using two Bayesian-oriented model selection indices: the deviance information criterion 

(DIC: Spiegelhalter et al., 2002) and the widely applicable information criterion (WAIC: 

Watanabe, 2010). Both of these model selection indices quantify model fit while penalizing for 

model complexity. Like the better-known model selection indices AIC and BIC, the model with 

the lowest DIC or WAIC value represents the preferred model. Differences of 2 are interpreted to 

reflect weak evidence for one model over the other and differences greater than 10 are 

interpreted to reflect strong evidence for one model over the other (Spiegelhalter et al., 2002). If 

the model selection indices suggest that the quad MPT-RT with constraints better accounts for 

observed IAT responses than the basic quad MPT-RT model, then we can conclude that 

automatic processing happens faster than control-oriented processing. The code below computes 

DIC and WAIC for the fitted model. 

mptrtModel$summary$dic <- 
runjags::extract(mptrtModel$runjags,"dic") 
 
mptrtModel$summary$waic <- WAIC(mptrtModel) 

 We observe adequate model fit for both the MPT-RT model with constraints (W = 0.016) 

and the basic MPT-RT model (W = 0.016). Model selection indices for the MPT-RT model with 
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constraints (DIC = 9272; WAIC = 9392) versus the basic MPT-RT model (DIC = 9274; WAIC = 

9397) offer moderate support for the constrained model (ΔDIC = 2, ΔWAIC=5).  

Model-selection analyses evaluate whether a model with constraints imposed on each 

individual’s data provides a better account than the unconstrained model. We can also test 

whether such a constraint is satisfied in terms of group-level means estimated by the 

unconstrained model. For this purpose, we computed the proportion of samples in which the 

group-level estimate of L3 is smaller than L1. The resulting Bayesian p-value from this test may 

be interpreted as support for our hypothesis of L3 ≥ L1 at the level of group means if the p-value 

is small. The code below computes this proportion and summarizes the results. 

tp <- transformedParameters(mptrtModel, transformedParameters = 
                              list("diff= L3 < L1")) 
 
summary(tp) 
 
Indeed, this test returns a Bayesian p-value of .036, offering additional support for our 

hypothesis that the automatic processing pathway is faster than the control-oriented processing 

pathway. 

Testing Correlations Between MPT-RT Parameters and Covariates 

 Researchers may want to explore correlations between model parameter estimates and 

external covariates, such as personality traits, attitudes, test scores, or demographic variables. 

The TreeBUGS package can perform such tests by including covariates in the model fitting 

function. Covariate testing is not an advantage of the MPT-RT modeling approach over the RT-

MPT modeling approach, per se, but instead is a feature that is available in the TreeBUGS 

package but not the rtmpt package. Here we explore the sample correlation of quad MPT-RT 

parameters with self-reported attitudes towards Black people, measured with a feeling 
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thermometer ranging from 1 to 10. The code below shows how we adjust arguments in the fitting 

function to carry out this analysis. 

mptrtCovariate <- traitMPT(eqnfile="mptrtQuad.eqn", 
                  data = rtmptData, 
                  n.adapt=10000, 
                  n.iter=200000, 
                  n.burnin=5000, 
                  n.thin=5, 
                  n.chains=4, 

                  covData = subset(covariate, 
select = "att_Black"), 
                  predStructure = list("ACwg1 
ACbb1 D1 G1 OB1; att_Black"), 

                  predType = list("c")) 
 

The argument covData = subset(covariate, select = 

"att_Black")provides a data frame containing the self-reported attitude scores for each 

participant. Importantly, the order of participants in the covariate data frame must be identical to 

the order of participants in the IAT frequency data provided in the mptrtData.csv file. 

Additionally, we include the name of the covariate we wish to use to predict specific MPT 

parameters in the argument  

predStructure = list("ACwg1 ACbb1 D1 G1 OB1; att_Black")  

In this argument, we separate the list of MPT parameters of interest from the covariate 

with a semicolon. After fitting the model to the data, the summary of the results can be reviewed 

using this function: 

summary(mptrtCovariate) 

From our summary output, we find that neither participant’s White-good Associations (β = -.14, 

95% BCI [-.37, .10]) nor Black-bad Associations (β = -.07, 95% BCI [-.21, .35]) are correlated 

with their self-reported attitudes towards Black people.  
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Conclusion and Limitations 

Response-time extended MPT models are still relatively novel in social cognition, but 

researchers have already begun to apply these methods to study a wide variety of topics, 

including weapon bias (Laukenmann et al., 2023), heuristic decision making (Heck & Erdfelder, 

2017), memory (Brainerd et al., 2019; Greene & Naveh-Benjamin, 2024; Gutkin et al., 2024), 

speed-accuracy tradeoff (Heck & Erdfelder, 2020; Starns, 2018), and selective attention (Li & 

Deng, 2024). We hope our tutorial contributes to this growing body of work and provides 

researchers with a toolbox for implementing response-time extended MPT models within their 

own studies. Please note that this tutorial should not be taken as empirical evidence of the 

validity of the RT-extended versions of the quad model, so please refrain from drawing 

inferences based on model results we reported here. For example, our quad model 

implementations via RT-MPT and MPT-RT modeling methods differ in their estimated order of 

fast to slow process paths. Such divergence may arise due to differences in response time data 

curation and/or different assumptions for response time parameters (e.g., RT distribution 

assumptions, latency parameter restrictions). These and other issues merit further empirical 

investigation. In addition to adequate model fit, an RT-extended MPT model must undergo a 

program of validation studies intended to provide support for the psychological interpretation of 

each parameter.9 This tutorial does not provide evidence for the validity of either of the response 

time-extended models we describe here, but instead highlights how both modeling approaches 

hold great promise for investigating questions related to the nature and interplay of the cognitive 

processes underlying IAT responses. Ultimately, RT-extended MPT models can position 

 
9 MPT models – traditional and response-time extended – are validated through a series of selective influence 
studies in which experimental manipulations are introduced that are intended to facilitate or constrain the specific 
cognitive processes specified in the MPT model. For further reading on MPT validation, we recommend Klauer 
(2024) and Hütter and Klauer (2016).  
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researchers to test novel hypotheses and provide greater theoretical precision than other formal 

modeling approaches.  

That said, these approaches are not without their limitations. MPT-RT models, and 

especially RT-MPT models, are computationally resource-intensive, and sufficient convergence 

for IAT data often requires lengthy estimation times and a computer with adequate working 

memory. In the present example, fitting the MPT-RT version of the quad model to the IAT data 

took up to 30 minutes per estimation. Fitting the RT-MPT version of the quad model took longer 

and varied more substantially, with estimations ranging from 12 hours to multiple days. Due to 

the length of the estimation time, the feasibility of this approach is limited when modeling large 

samples of data, fitting complex models, and modeling without sufficient computing resources. 

Given the practical obstacles and complexity of RT-extended MPT models, we do not 

recommend that they be used in all circumstances. If a research objective can be achieved with a 

traditional MPT model, then researchers can avoid the drawbacks of response-time extended 

approaches, such as the distributional assumptions or parameter constraints. 

One final limitation is that, anecdotally, our colleagues often report feeling intimidated or 

confused by seemingly-arcane MPT analytic methods – response time-extended or otherwise. 

We wrote this user-friendly tutorial specifically to address this limitation. By combining step-by-

step instructions with free open-source software, we hope that more researchers will use 

response-time extended MPT models for the IAT or other social cognitive tasks in their own 

work.   
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